Boxed Warning
Ototoxicity:
Neurotoxicity, manifested as vestibular and permanent bilateral auditory ototoxicity, can occur in patients with preexisting renal damage and in patients with normal renal function treated at higher doses and/or periods longer than those recommended. The risk of aminoglycoside-induced ototoxicity is greater in patients with renal damage. High frequency deafness usually occurs first and can be detected only by audiometric testing. Vertigo may occur and may be evidence of vestibular injury. Other manifestations of neurotoxicity may include numbness, skin tingling, muscle twitching, and convulsions. The risk of hearing loss due to aminoglycosides increases with the degree of exposure to either high peak or high trough serum concentrations. Patients developing cochlear damage may not have symptoms during therapy to warn them of developing eighth-nerve toxicity, and total or partial irreversible bilateral deafness may occur after the drug has been discontinued. Aminoglycoside-induced ototoxicity is usually irreversible. Patients treated with parenteral aminoglycosides should be under close clinical observation because of the potential ototoxicity associated with their use. Safety for treatment periods which are longer than 14 days has not been established.
Nephrotoxicity:
Aminoglycosides are potentially nephrotoxic. The risk of nephrotoxicity is greater in patients with impaired renal function and in those who receive high doses or prolonged therapy. Patients treated with parenteral aminoglycosides should be under close clinical observation because of the potential nephrotoxicity associated with their use. Safety for treatment periods which are longer than 14 days has not been established.
Neuromuscular blockade:
Neuromuscular blockade and respiratory paralysis have been reported following parenteral injection, topical instillation (as in orthopedic and abdominal irrigation or in local treatment of empyema), and following oral use of aminoglycosides. The possibility of these phenomena should be considered if aminoglycosides are administered by any route, especially in patients receiving anesthetics, neuromuscular blocking agents such as tubocurarine, succinylcholine, decamethonium, or in patients receiving massive transfusions of citrate-anticoagulated blood. If blockage occurs, calcium salts may reverse these phenomena, but mechanical respiratory assistance may be necessary.
Monitoring:
Renal and eighth-nerve function should be closely monitored especially in patients with known or suspected renal impairment at the onset of therapy and also in those whose renal function is initially normal but who develop signs of renal dysfunction during therapy. Serum concentrations of amikacin should be monitored when feasible to assure adequate levels and to avoid potentially toxic levels and prolonged peak concentrations above 35 mcg/mL. Urine should be examined for decreased specific gravity, increased excretion of proteins, and the presence of cells or casts. Blood urea nitrogen, serum creatinine, or creatinine clearance should be measured periodically. Serial audiograms should be obtained where feasible in patients old enough to be tested, particularly high-risk patients. Evidence of ototoxicity (dizziness, vertigo, tinnitus, roaring in the ears, and hearing loss) or nephrotoxicity requires discontinuation of the drug or dosage adjustment.
Concurrent therapy:
Concurrent and/or sequential systemic, oral, or topical use of other neurotoxic or nephrotoxic products, particularly bacitracin, cisplatin, amphotericin B, cephaloridine, paromomycin, viomycin, polymyxin B, colistin, vancomycin, or other aminoglycosides should be avoided. Other factors that may increase risk of toxicity are advanced age and dehydration.
The concurrent use of amikacin with potent diuretics (ethacrynic acid, or furosemide) should be avoided because diuretics by themselves may cause ototoxicity. In addition, when administered intravenously, diuretics may enhance aminoglycoside toxicity by altering antibiotic concentrations in serum and tissue.
Dosage Forms
Excipient information presented when available (limited, particularly for generics); consult specific product labeling. [DSC] = Discontinued product
Solution, Injection, as sulfate:
Generic: 500 mg/2 mL (2 mL [DSC]); 1 g/4 mL (4 mL)
Solution, Injection, as sulfate [preservative free]:
Generic: 500 mg/2 mL (2 mL); 1 g/4 mL (4 mL)
Pharmacology
Mechanism of Action
Inhibits protein synthesis in susceptible bacteria by binding to 30S ribosomal subunits
Pharmacokinetics/Pharmacodynamics
Absorption
IM: Rapid
Oral: Poorly absorbed
Distribution
Vd: 0.25 L/kg (Vozeh 1988); primarily into extracellular fluid (highly hydrophilic); poor penetration into the blood-brain barrier even when meninges are inflamed; Vd is increased in neonates and patients with edema, ascites, fluid overload; Vd is decreased in patients with dehydration
Relative diffusion of antimicrobial agents from blood into CSF: Good only with inflammation (exceeds usual MICs)
CSF:blood level ratio: Infants: Normal meninges: 10% to 20%; Inflamed meninges: up to 50%
Excretion
Urine (94% to 98% unchanged)
Time to Peak
Serum: IM: 60 minutes; IV: Within 30 minutes following a 30-minute infusion
Half-Life Elimination
Renal function and age dependent:
Infants: Low birth weight (1 to 3 days): 7 to 9 hours; Full-term >7 days: 4 to 5 hours (Howard 1975)
Children: 1.6 to 2.5 hours
Adolescents: 1.5 ± 1 hour
Adults: Normal renal function: ~2 hours; Anuria/end-stage renal disease: 17 to 150 hours (Aronoff 2007)
Protein Binding
0% to 11%
Use in Specific Populations
Special Populations: Renal Function Impairment
Clearance is decreased in renal impairment.
Use: Labeled Indications
Serious infections: Treatment of serious infections (eg, bone infections, respiratory tract infections, endocarditis, septicemia) due to gram-negative organisms, including Pseudomonas, Escherichia coli, Proteus, Providencia, Klebsiella, Enterobacter, Serratia, and Acinetobacter
Use: Off Label
Cystic fibrosis exacerbation (aerosolized amikacin)b
The use of aerosolized amikacin for cystic fibrosis exacerbations has not been well studied. There is evidence to support the use of aerosolized amikacin to eradicate P. aeruginosa, Mycobacterium abscessus, and Mycobacterium avium complex in patients with cystic fibrosis when used as adjunctive therapy with amikacin IV and ceftazidime. A Society of Infectious Diseases Pharmacists consensus summary does not recommend routine use of aerosolized antibiotics to treat acute cystic fibrosis exacerbations. Le 2010, Schaad 1987
Mycobacterium avium complex (MAC)yes
Based on an official statement on the diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases from the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA), amikacin (or streptomycin) for the first 2 to 3 months of therapy in combination with a macrolide, rifamycin, and ethambutol is effective and recommended for the treatment of extensive Mycobacterium avium complex (MAC) disease, especially fibrocavitary or severe nodular/bronchiectatic disease, or patients who have failed prior drug therapy.
Tuberculosisyes
According to the American Thoracic Society, Centers for Disease Control and Prevention, and Infectious Diseases Society of America joint guidelines on the treatment of tuberculosis (TB), intravenous (IV) or intramuscular (IM) amikacin can be used as second-line therapy for patients with drug-resistant TB whose isolate has demonstrated presumed susceptibility to amikacin.
Contraindications
Hypersensitivity to amikacin, other aminoglycosides, or any component of the formulation
Dosage and Administration
Dosing: Adult
Individualization is critical because of the low therapeutic index
In underweight and nonobese patients, use of total body weight (TBW) instead of ideal body weight for determining the initial mg/kg/dose is widely accepted (Nicolau 1995). Ideal body weight (IBW) also may be used to determine doses for patients who are neither underweight nor obese (Gilbert 2009).
Initial and periodic peak and trough plasma drug levels should be determined, particularly in critically-ill patients with serious infections or in disease states known to significantly alter aminoglycoside pharmacokinetics (eg, cystic fibrosis, burns, or major surgery). Manufacturer recommends a maximum daily dose of 15 mg/kg/day (or 1.5 g/day in heavier patients). Higher doses may be warranted based on therapeutic drug monitoring or susceptibility information.
Usual dosage range:
IM, IV: 5 to 7.5 mg/kg/dose every 8 hours; Note: Some clinicians suggest a daily dose of 15 to 20 mg/kg/day for all patients with normal renal function. This dose is at least as efficacious with similar, if not less, toxicity than conventional dosing.
Indication-specific dosing:
Cerebrospinal fluid (CSF) shunt infection (susceptible gram-negative organisms):
IV: 5 mg/kg every 8 hours in combination with other appropriate agents (IDSA [Tunkel 2004]; IDSA [Tunkel 2017])
Intraventricular/intrathecal (adjunct to systemic therapy; use a preservative-free preparation): 5 to 50 mg/day; usual dose: 30 mg/day (Guardado 2008; IDSA [Tunkel 2004]; IDSA [Tunkel 2017]; Khan 2017; Shofty 2016; Wang 2014). Some experts recommend adjusting dosage and administration interval based on CSF amikacin concentrations (goal: 10 to 20 times MIC of causative organism (IDSA [Tunkel 2017]); data are limited (Smetana 2018). When intraventricular amikacin is administered via a ventricular drain, clamp drain for 15 to 60 minutes after administration (allows solution to equilibrate in CSF) (IDSA [Tunkel 2004]; IDSA [Tunkel 2017]). Note: Intraventricular/intrathecal administration is generally reserved for use in patients who fail parenteral therapy despite removal of CSF shunt or when CSF shunt cannot be removed (Baddour 2018).
Cystic fibrosis exacerbation (off-label use/route): Inhalation for nebulization:
Monotherapy: 500 mg twice daily (Le 2010)
Adjunctive therapy: 100 mg twice daily with concomitant IV amikacin and ceftazidime (Schaad 1987)
Meningitis, bacterial (susceptible gram-negative organisms): IV: 5 mg/kg every 8 hours in combination with other appropriate agents (IDSA [Tunkel 2004]; IDSA [Tunkel 2017])
Mycobacterium avium complex (MAC) (off-label use): IV: Adjunct therapy (with macrolide, rifamycin, and ethambutol): 8 to 25 mg/kg (maximum single dose for age >50 years: 500 mg) 2 to 3 times weekly for first 2 to 3 months for severe disease (Griffith 2007)
Mycobacterium fortuitum, M. chelonae, or M. abscessus: IV: 10 to 15 mg/kg daily for at least 2 weeks with high dose cefoxitin
Pneumonia, hospital-acquired (HAP) or ventilator-associated (VAP) (alternative therapy) (off-label dose): IV: 15 to 20 mg/kg/dose once every 24 hours for 7 days; may consider shorter or longer durations depending on rate of clinical improvement. When used as empiric therapy, use in combination with an agent active against S. aureus and an additional antipseudomonal agent. Note: Aminoglycosides are not recommended as monotherapy in patients with HAP or VAP due to P. aeruginosa (Kalil 2016).
Dosing: Geriatric
Refer to adult dosing.
Dosing: Pediatric
Note: Individualization is critical because of the low therapeutic index. Dosage should be based on an estimate of ideal body weight. In morbidly obese children and adolescents, dosage requirement may best be estimated using a dosing weight of IBW + 0.4 (TBW - IBW). Initial dosing recommendation presented; dosage should be individualized based upon serum concentration monitoring. Initial and periodic plasma drug concentrations (eg, peak and trough with conventional dosing, post dose level at a prespecified time with extended-interval dosing) should be determined, particularly in critically ill patients with serious infections or in disease states known to significantly alter aminoglycoside pharmacokinetics (eg, cystic fibrosis, burns, or major surgery).
General dosing, severe, susceptible infections: Infants, Children, and Adolescents:
IM, IV: 15 to 22.5 mg/kg/day divided every 8 hours or 15 to 20 mg/kg/dose every 24 hours (Red Book [AAP 2015]);
CNS infections:
Meningitis (Tunkel 2004):
Infants and Children: IV: 20 to 30 mg/kg/day divided every 8 hours
Adolescents: IV: 15 mg/kg/day divided every 8 hours
VP-shunt infection, ventriculitis: Limited data available: Intraventricular/intrathecal (use a preservative-free preparation): Infants, Children, and Adolescents: 5 to 50 mg/day; usual dose: 30 mg/day
Cystic fibrosis, pulmonary infection: Infants, Children, and Adolescents:
Traditional dosing: IV, IM: 10 mg/kg/dose every 8 hours (Wallace 1993)
Extended-interval dosing: IV: 30 mg/kg/dose every 24 hours (Flume 2009); Note: The CF Foundation recommends extended-interval dosing as preferred over traditional dosing.
Endocarditis, treatment: Children and Adolescents: IV: 15 mg/kg/day divided every 8 to 12 hours; use in combination with other antibiotics dependent upon organism and source of infection (ie, valve-type) (AHA [Baltimore 2015])
Intra-abdominal infection, complicated: Infants, Children, and Adolescents: IV: 15 to 22.5 mg/kg/day divided every 8 to 24 hours (Solomkin 2010)
Mycobacterium, avium complex infection (MAC), treatment: HIV-exposed/-positive:
Infants and Children: IV: 15 to 30 mg/kg/day divided every 12 to 24 hours as part of a multiple drug regimen; maximum daily dose: 1,500 mg/day (HHS [OI pediatric 2013])
Adolescents: IV: 10 to 15 mg/kg/dose every 24 hours as part of a multiple drug regimen; maximum daily dose: 1,500 mg/day (HHS [OI adult 2016]; HHS [OI pediatric 2013])
Tuberculosis, drug-resistant:
Infants, Children, and Adolescents ≤14 years:
Non-HIV-exposed/-positive:
Once-daily regimen: IM, IV: 15 to 20 mg/kg/dose once daily as part of a multiple drug regimen (ATS/CDC/IDSA [Nahid 2016]); current guidelines do not provide a maximum daily dose; for HIV-exposed/-positive pediatric patients, a maximum daily dose of 1,000 mg/day has been suggested for similar mg/kg doses (HHS [OI pediatric 2013])
Twice-weekly regimen: IM, IV: 25 to 30 mg/kg/dose administered twice weekly as part of a multiple drug regimen; dosing based on experience in adult patients and pediatric pharmacokinetic considerations (ATS/CDC/IDSA [Nahid 2016]); current guidelines do not provide a maximum daily dose; for HIV-exposed/-positive pediatric patients, a maximum daily dose of 1,000 mg/day has been suggested for similar mg/kg doses (HHS [OI pediatric 2013])
HIV-exposed/-positive: IM, IV: 15 to 30 mg/kg/dose once daily as part of a multiple drug regimen; maximum daily dose: 1,000 mg/day (HHS [OI pediatric 2013])
Adolescents ≥15 years: Independent of HIV status:
Once-daily regimen: IM, IV: 15 mg/kg/dose once daily as part of a multiple drug regimen (ATS/CDC/IDSA [Nahid 2016]; HHS [OI adult 2016]); current guidelines do not provide a maximum daily dose; for HIV-exposed/-positive pediatric patients, a maximum daily dose of 1,000 mg/day has been suggested for similar mg/kg doses (HHS [OI pediatric 2013])
Three-times-weekly regimen: IM, IV: 25 mg/kg/dose 3 times weekly (ATS/CDC/IDSA [Nahid 2016]; HHS [OI adult 2016]). Current guidelines do not provide a maximum dose; for HIV-exposed/-positive pediatric patients, a maximum daily dose of 1,000 mg/day has been suggested for similar mg/kg doses (HHS [OI pediatric 2013]).
Peritonitis (CAPD): Infants, Children, and Adolescents: Intraperitoneal: Continuous: Loading dose: 25 mg per liter of dialysate; maintenance dose: 12 mg per liter (Warady 2012)
Dosing: Obesity
In moderate obesity (TBW/IBW ≥1.25) or greater (eg, morbid obesity [TBW/IBW >2]), initial dosage requirement may be estimated using a dosing weight of IBW + 0.4 (TBW - IBW) (Traynor 1995).
Reconstitution
For intravenous administration, dilute in a compatible solution (eg, NS, D5W) to a final concentration of 0.25 to 5 mg/mL.
Administration
IM: Administer IM injection in large muscle mass.
IV: Infuse over 30 to 60 minutes.
Some penicillins (eg, carbenicillin, ticarcillin, and piperacillin) have been shown to inactivate in vitro. This has been observed to a greater extent with tobramycin and gentamicin, while amikacin has shown greater stability against inactivation. Concurrent use of these agents may pose a risk of reduced antibacterial efficacy in vivo, particularly in the setting of profound renal impairment. However, definitive clinical evidence is lacking. If combination penicillin/aminoglycoside therapy is desired in a patient with renal dysfunction, separation of doses (if feasible), and routine monitoring of aminoglycoside levels, CBC, and clinical response should be considered.
Intrathecal/Intraventricular (off-label route): Reconstitute with preservative-free diluent (NS) only to a final volume of 3 mL (Corpus 2004; Preston 1993). When administered through a ventricular drain, clamp drain for 15 to 60 minutes before opening the drain to allow amikacin solution to equilibrate in the CSF (IDSA [Tunkel 2017).
Inhalation (off-label route): Nebulization: Use with standard jet nebulizer connected to an air compressor or ultrasonic nebulizer; administer with mouthpiece or face mask (Le 2010)
Dietary Considerations
Some products may contain sodium.
Storage
Store intact vials at 20°C to 25°C (68°F to 77°F). Following admixture at concentrations of 0.25 to 5 mg/mL in D5W, NS, D51/4NS, D51/2NS, LR, Normosol M in D5W, Normosol R in D5, Plasma-Lyte 56 in D5 or Plasma-Lyte 148 in D5W, amikacin is stable for 24 hours at room temperature, 60 days at 4°C (39°F), or 30 days at -15°C (5°F). Previously refrigerated or thawed frozen solutions are stable for 24 hours when stored at 25°C (77°F).
Drug Interactions
Amphotericin B: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Arbekacin: May enhance the nephrotoxic effect of Aminoglycosides. Arbekacin may enhance the ototoxic effect of Aminoglycosides. Monitor therapy
Ataluren: May enhance the adverse/toxic effect of Aminoglycosides. Specifically, an increased risk of nephrotoxicity may occur with the concomitant use of ataluren and aminoglycosides. Avoid combination
BCG (Intravesical): Antibiotics may diminish the therapeutic effect of BCG (Intravesical). Avoid combination
BCG Vaccine (Immunization): Antibiotics may diminish the therapeutic effect of BCG Vaccine (Immunization). Monitor therapy
Bisphosphonate Derivatives: Aminoglycosides may enhance the hypocalcemic effect of Bisphosphonate Derivatives. Monitor therapy
Botulinum Toxin-Containing Products: Aminoglycosides may enhance the neuromuscular-blocking effect of Botulinum Toxin-Containing Products. Monitor therapy
Capreomycin: May enhance the neuromuscular-blocking effect of Aminoglycosides. Monitor therapy
CARBOplatin: Aminoglycosides may enhance the ototoxic effect of CARBOplatin. Especially with higher doses of carboplatin. Monitor therapy
Cefazedone: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cephalosporins (2nd Generation): May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cephalosporins (3rd Generation): May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cephalosporins (4th Generation): May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cephalothin: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cephradine: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Cholera Vaccine: Antibiotics may diminish the therapeutic effect of Cholera Vaccine. Management: Avoid cholera vaccine in patients receiving systemic antibiotics, and within 14 days following the use of oral or parenteral antibiotics. Avoid combination
CISplatin: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Colistimethate: Aminoglycosides may enhance the nephrotoxic effect of Colistimethate. Aminoglycosides may enhance the neuromuscular-blocking effect of Colistimethate. Consider therapy modification
CycloSPORINE (Systemic): Aminoglycosides may enhance the nephrotoxic effect of CycloSPORINE (Systemic). Monitor therapy
Distigmine: Aminoglycosides may diminish the therapeutic effect of Distigmine. Monitor therapy
Foscarnet: May enhance the nephrotoxic effect of Aminoglycosides. Avoid combination
Lactobacillus and Estriol: Antibiotics may diminish the therapeutic effect of Lactobacillus and Estriol. Monitor therapy
Loop Diuretics: May enhance the adverse/toxic effect of Aminoglycosides. Specifically, nephrotoxicity and ototoxicity. Monitor therapy
Mannitol (Systemic): May enhance the nephrotoxic effect of Aminoglycosides. Avoid combination
Mecamylamine: Aminoglycosides may enhance the neuromuscular-blocking effect of Mecamylamine. Avoid combination
Methoxyflurane: Aminoglycosides may enhance the nephrotoxic effect of Methoxyflurane. Avoid combination
Neuromuscular-Blocking Agents: Aminoglycosides may enhance the respiratory depressant effect of Neuromuscular-Blocking Agents. Monitor therapy
Nonsteroidal Anti-Inflammatory Agents: May decrease the excretion of Aminoglycosides. Data only in premature infants. Monitor therapy
Oxatomide: May enhance the ototoxic effect of Aminoglycosides. Monitor therapy
Penicillins: May decrease the serum concentration of Aminoglycosides. Primarily associated with extended spectrum penicillins, and patients with renal dysfunction. Exceptions: Amoxicillin; Ampicillin; Bacampicillin; Cloxacillin; Dicloxacillin; Nafcillin; Oxacillin; Penicillin G (Parenteral/Aqueous); Penicillin G Benzathine; Penicillin G Procaine; Penicillin V Benzathine; Penicillin V Potassium. Consider therapy modification
Sodium Picosulfate: Antibiotics may diminish the therapeutic effect of Sodium Picosulfate. Management: Consider using an alternative product for bowel cleansing prior to a colonoscopy in patients who have recently used or are concurrently using an antibiotic. Consider therapy modification
Tenofovir Products: Aminoglycosides may increase the serum concentration of Tenofovir Products. Tenofovir Products may increase the serum concentration of Aminoglycosides. Monitor therapy
Typhoid Vaccine: Antibiotics may diminish the therapeutic effect of Typhoid Vaccine. Only the live attenuated Ty21a strain is affected. Management: Vaccination with live attenuated typhoid vaccine (Ty21a) should be avoided in patients being treated with systemic antibacterial agents. Use of this vaccine should be postponed until at least 3 days after cessation of antibacterial agents. Consider therapy modification
Vancomycin: May enhance the nephrotoxic effect of Aminoglycosides. Monitor therapy
Test Interactions
Some penicillin derivatives may accelerate the degradation of aminoglycosides in vitro, leading to a potential underestimation of aminoglycoside serum concentration.
Adverse Reactions
1% to 10%:
Central nervous system: Neurotoxicity
Genitourinary: Nephrotoxicity
Otic: Auditory ototoxicity, vestibular ototoxicity
<1%, postmarketing, and/or case reports: Arthralgia, drowsiness, drug fever, dyspnea, eosinophilia, headache, hypersensitivity reaction, hypotension, nausea, paresthesia, skin rash, tremor, vomiting, weakness
Warnings/Precautions
Concerns related to adverse effects:
- Hypersensitivity: Cross-sensitivity to other aminoglycosides may occur.
- Nephrotoxicity: [US Boxed Warning]: May cause nephrotoxicity; usual risk factors include preexisting renal impairment, concomitant nephrotoxic medications, advanced age and dehydration. Discontinue treatment if signs of nephrotoxicity occur; renal damage is usually reversible.
- Neuromuscular blockade and respiratory paralysis: [US Boxed Warning]: May cause neuromuscular blockade and respiratory paralysis; especially when given soon after anesthesia or muscle relaxants.
- Neurotoxicity: [US Boxed Warning]: May cause neurotoxicity; usual risk factors include preexisting renal impairment, concomitant neuro-/nephrotoxic medications, advanced age and dehydration. Ototoxicity is proportional to the amount of drug given and the duration of treatment. Tinnitus or vertigo may be indications of vestibular injury and impending bilateral irreversible damage. Discontinue treatment if signs of ototoxicity occur.
- Superinfection: Prolonged use may result in fungal or bacterial superinfection, including C. difficile-associated diarrhea (CDAD) and pseudomembranous colitis; CDAD has been observed >2 months postantibiotic treatment.
Disease-related concerns:
- Hearing impairment: Use with caution in patients with preexisting vertigo, tinnitus, or hearing loss.
- Hypocalcemia: Use with caution in patients with hypocalcemia.
- Neuromuscular disorders: Use with caution in patients with neuromuscular disorders, including myasthenia gravis or parkinsonism.
- Renal impairment: Use with caution in patients with preexisting renal insufficiency; dosage modification required.
Concurrent drug therapy issues:
- Drug-drug interactions: Potentially significant interactions may exist, requiring dose or frequency adjustment, additional monitoring, and/or selection of alternative therapy. Consult drug interactions database for more detailed information.
- Neurotoxic and/or nephrotoxic drugs: [US Boxed Warning]: Avoid concomitant or sequential use of other neurotoxic and/or nephrotoxic drugs (eg, bacitracin, cisplatin, amphotericin B, paromomycin, polymyxin B, colistin, vancomycin, other aminoglycosides).
- Potent diuretics: [US Boxed Warning]: Avoid concomitant use with potent diuretics (eg, ethacrynic acid, furosemide) since diuretics themselves may cause ototoxicity and may enhance aminoglycoside toxicity.
Dosage form specific issues:
- Sulfites: May contain sulfites which may cause allergic-type reactions (including anaphylaxis) as well as life-threatening or less severe asthmatic episodes in certain individuals.
Other warnings/precautions:
- Surgical irrigation: Irreversible deafness, renal failure, and death due to neuromuscular blockade have been reported following use of aminoglycosides as surgical irrigation; rapid systemic absorption occurs with topical application (except to the urinary bladder).
Monitoring Parameters
Urinalysis, BUN, serum creatinine, appropriately timed peak and trough concentrations, vital signs, temperature, weight, I & O, hearing parameters
Initial and periodic peak and trough plasma drug levels should be determined, particularly in critically-ill patients with serious infections or in disease states known to significantly alter aminoglycoside pharmacokinetics (eg, cystic fibrosis, burns, or major surgery). Aminoglycoside levels measured from blood taken from Silastic® central catheters can sometimes give falsely high readings (draw levels from alternate lumen or peripheral stick, if possible).
Some penicillin derivatives may accelerate the degradation of aminoglycosides in vitro. This may be clinically-significant for certain penicillin (ticarcillin, piperacillin, carbenicillin) and aminoglycoside (gentamicin, tobramycin) combination therapy in patients with significant renal impairment. Close monitoring of aminoglycoside levels is warranted.
Pregnancy
Pregnancy Risk Factor
D
Pregnancy Considerations
Amikacin crosses the placenta.
Aminoglycosides may cause fetal harm if administered to a pregnant woman. There are several reports of total irreversible bilateral congenital deafness in children whose mothers received a different aminoglycoside (streptomycin) during pregnancy. Although serious side effects to the fetus/infant have not been reported following maternal use of all aminoglycosides, a potential for harm exists.
Due to pregnancy-induced physiologic changes, some pharmacokinetic parameters of intravenous amikacin may be altered (Bernard 1977).
Amikacin may be one of the preferred antibiotics when an aminoglycoside is needed for multidrug resistant TB in pregnancy (HHS [OI] 2018). Amikacin is recommended as part of a multiantibiotic treatment regimen of Mycobacterium avium complex (MAC) in patients with cystic fibrosis in certain situations (Floto 2016); use of the IV route should be reserved for life-threatening infections in pregnant females (Panchaud 2016).
Patient Education
What is this drug used for?
- It is used to treat bacterial infections.
Frequently reported side effects of this drug
- Diarrhea
Other side effects of this drug: Talk with your doctor right away if you have any of these signs of:
- Kidney problems like unable to pass urine, blood in the urine, change in amount of urine passed, or weight gain
- Noise or ringing in the ears
- Trouble hearing
- Hearing loss
- Change in balance
- Muscle weakness
- Burning or tingling feeling
- Twitching
- Seizures
- Trouble breathing
- Slow breathing
- Shallow breathing
- Clostridioides (formerly Clostridium) difficile colitis (C. diff)–associated diarrhea like abdominal pain or cramps, severe diarrhea or watery stools, or bloody stools
- Signs of a significant reaction like wheezing; chest tightness; fever; itching; bad cough; blue skin color; seizures; or swelling of face, lips, tongue, or throat.
Note: This is not a comprehensive list of all side effects. Talk to your doctor if you have questions.
Consumer Information Use and Disclaimer: This information should not be used to decide whether or not to take this medicine or any other medicine. Only the healthcare provider has the knowledge and training to decide which medicines are right for a specific patient. This information does not endorse any medicine as safe, effective, or approved for treating any patient or health condition. This is only a brief summary of general information about this medicine. It does NOT include all information about the possible uses, directions, warnings, precautions, interactions, adverse effects, or risks that may apply to this medicine. This information is not specific medical advice and does not replace information you receive from the healthcare provider. You must talk with the healthcare provider for complete information about the risks and benefits of using this medicine.